266 research outputs found

    Lifetime Maximization for Amplify-and-Forward Cooperative Networks

    Get PDF
    [[abstract]]Power allocation strategies are devised to maximize the network lifetime of amplify-and-forward (AF) cooperative networks. We consider the scenario where one source and multiple partners cooperate to transmit messages to the destination. The powers emitted by the users are subject to the SNR requirement at the destination. First, the power allocation strategy that demands the minimum instantaneous aggregate transmit power of all cooperating partners is described and analyzed. The optimal solution results in a form of selective relaying; namely, the user with the best channel condition is selected to help in relaying the message. However, this instantaneous power minimization strategy does not necessarily maximize the lifetime of battery-limited systems. Then, we propose three AF cooperative schemes to exploit the channel state information (CSI), the residual battery energy and the QoS requirement. It is shown that the network lifetime can be extended considerably by taking all these three factors into account.[[fileno]]2030137030021[[department]]電機工程學

    Cross-layer QoS Analysis of Opportunistic OFDM-TDMA and OFDMA Networks

    Full text link

    Improved Lattice Gauge Field Hamiltonian

    Get PDF
    Lepage's improvement scheme is a recent major progress in lattice QCDQCD, allowing to obtain continuum physics on very coarse lattices. Here we discuss improvement in the Hamiltonian formulation, and we derive an improved Hamiltonian from a lattice Lagrangian free of O(a2)O(a^2) errors. We do this by the transfer matrix method, but we also show that the alternative via Legendre transformation gives identical results. We consider classical improvement, tadpole improvement and also the structure of L{\"u}scher-Weisz improvement. The resulting color-electric energy is an infinite series, which is expected to be rapidly convergent. For the purpose of practical calculations, we construct a simpler improved Hamiltonian, which includes only nearest-neighbor interactions.Comment: 30 pages, LaTe

    Gravitons and Lightcone Fluctuations

    Get PDF
    Gravitons in a squeezed vacuum state, the natural result of quantum creation in the early universe or by black holes, will introduce metric fluctuations. These metric fluctuations will introduce fluctuations of the lightcone. It is shown that when the various two-point functions of a quantized field are averaged over the metric fluctuations, the lightcone singularity disappears for distinct points. The metric averaged functions remain singular in the limit of coincident points. The metric averaged retarded Green's function for a massless field becomes a Gaussian which is nonzero both inside and outside of the classical lightcone. This implies some photons propagate faster than the classical light speed, whereas others propagate slower. The possible effects of metric fluctuations upon one-loop quantum processes are discussed and illustrated by the calculation of the one-loop electron self-energy.Comment: 18pp, LATEX, TUTP-94-1

    The Quantum Interest Conjecture

    Get PDF
    Although quantum field theory allows local negative energy densities and fluxes, it also places severe restrictions upon the magnitude and extent of the negative energy. The restrictions take the form of quantum inequalities. These inequalities imply that a pulse of negative energy must not only be followed by a compensating pulse of positive energy, but that the temporal separation between the pulses is inversely proportional to their amplitude. In an earlier paper we conjectured that there is a further constraint upon a negative and positive energy delta-function pulse pair. This conjecture (the quantum interest conjecture) states that a positive energy pulse must overcompensate the negative energy pulse by an amount which is a monotonically increasing function of the pulse separation. In the present paper we prove the conjecture for massless quantized scalar fields in two and four-dimensional flat spacetime, and show that it is implied by the quantum inequalities.Comment: 17 pages, Latex, 3 figures, uses eps

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Constraining Cut-off Physics in the Cosmic Microwave Background

    Full text link
    We investigate the ability to constrain oscillatory features in the primordial power spectrum using current and future cosmic microwave background observations. In particular, we study the observability of an oscillation arising from imprints of physics at the cut-off energy scale. We perform a likelihood analysis on the WMAP data set, and find that the current data set constrains the amplitude of the oscillations to be less than 0.77 at 2-sigma, consistent with a power spectrum without oscillations. In addition, we investigate the fundamental limitations in the measurement of oscillation parameters by studying the constraints from a cosmic variance limited experiment. We find that such an experiment is capable of constraining the amplitude of such oscillations to be below 0.005, implying that reasonable models with cut-off energy scales Lambda>200 H_infl are unobservable through the microwave background.Comment: 16 pages, 7 figures; PRD accepted versio

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore